

Shaft Couplings

Backlash-free Torque Transmission Compensation of Shaft Misalignment

IMG.900.V09.EN

The Optimum Shaft Coupling for every Drive

Each drive has its own specific characteristics and therefore places different demands on the couplings which transmit the torque from one shaft to the second and which compensate for the resulting shaft misalignments. In most cases only backlash-free couplings are able to meet the requirements for high-speed, dynamic or reversing precision drives. *mayr*[®] power transmission has three of the most established and most attractive backlash-free shaft couplings in its programme:

- Disk pack couplings,
- Steel bellows couplings and
- Elastomer couplings

Therefore, $mayr^{\mbox{\tiny (B)}}$ offers an optimum solution for many different drives.

Overview: Backlash-free Shaft Couplings Types, Designs, Characteristics

primeflex [®] Steel bellows couplings	ROBA [®] -DS Servo couplings	smartflex [®] Steel bellows couplings	ROBA [®] -ES Elastomer couplings	ROBA [®] -DS All-steel couplings	ROBA [®] -DSM Torque measure- ment coupling	ROBA [®] -DS All-steel couplings
Page 6	Page 8	Page 10	Page 12	Page 14	Page 16	Page 18
		SI				
Flexible element						
Steel bellows	Disk pack	Steel bellows	Plastic element	Disk pack	Disk pack	Disk pack
Nominal torque ra	•					
24 – 120	35 – 150	16 – 700	4 – 1250	190 – 24000	190 – 1600	22000 - 110000
Max. permitted sp						
8000	22500	10000	28000	13600	9500	3600
Shaft diameter in						
10 – 45	10 – 45	8 - 85	6 – 80	14 – 170	14 – 110	on request
	operation temp. in °					
120	100	120	100	250	70	250
Torsionally rigid						
X	Х	Х		Х	Х	X
Torsionally flexible	8					
Vibuatian damaina	-		Х			
Vibration damping	3		v			
Can be combined	with opfoty clutch		Х			
	with safety clutch	Y	х	х		x
X Can be integrated w	vith torque measurem	X	^	^		^
Can be integrated w	viui torque measuren			х		x
Distance between	shaft ends			~		~
graduated	variable	graduated	fixed	variable	fixed	variable
Single-joint desig		gradatod	intod	Vallabio	iixou	Valiabio
enigie jenit deelg	x		Х	х		х
Shaft misalignme	nt compensation axi	al	A	~		~
enarmounginne	X		х	х		х
Shaft misalionme	nt compensation rac	lial				
			х			
Shaft misalignme	nt compensation an	gular				
	X		Х	х		Х
Double-joint desig	gn					
х	х	х		х	х	х
 Shaft misalignme 	nt compensation axi	al				
х	х	Х		х	x	х
 Shaft misalignme 	nt compensation rac	lial				
х	Х	Х		х	Х	Х
0	nt compensation an	•				
х	Х	Х		х	Х	х
ATEX design acc.						
	Х		Х	Х		
Product catalogue						
P.933.V	K.950.V	K.932.V	K.940.V	K.950.V	K.950.V	K.950.V

primeflex[®] – steel bellows couplings Modular Structure

According to German notation, decimal points in this catalogue are represented with a comma (e.g. 0,5 instead of 0.5). We reserve the right to make dimensional and constructional alterations.

For detailed information, detailed technical data and dimensions, please see our product catalogue P.933.V_ _._ $_$

This catalogue is also available for download as a pdf file on our website www.mayr.com.

6

primeflex® – steel bellows couplings

Characteristics and Advantages

- Plug-in connection
- Backlash-free
- Can be de-installed even after longer operating periods without damaging the steel bellows
- Extremely compact and very high performance density
- Easy to install via clamping or shrink disk connections
- Frictionally-locking and positive-locking shaft-hub connections
- Excellent misalignment compensation capability
- Can be variably dimensioned via the modular system
- Cost-effective

Installation Example

The primeflex[®]-steel bellows coupling transmits the torque backlash-free between the motor shaft and the gear shaft. By applying plug-in shrink disk hubs (see Installation Example) or plug-in clamping hubs, the primeflex[®]-steel bellows couplings can be mounted in areas which are difficult to access.

Tool	hnical Data	Dimensions				Size	
Tec	linical Data,	Dimensions			1	2	3
Nom	inal torque		T _{KN}	[Nm]	24	60	120
Oute	Outer diameter			[mm]	47	60	79
q	Minimum bor	e		[mm]	12	19	25
g ht	Maximum bo	re		[mm]	25	35	45
Clamping hub	Maximum spe	eed	n _{max}	[rpm]	8000	6000	4000
am		long steel bellows		[mm]	77	93	117
Ö	Length	short steel bellows		[mm]	62	74	92
	Axial	long steel bellows	ΔK_a	[mm]	0,2	0,25	0,25
u [±]	displacement	short steel bellows	ΔK_a	[mm]	0,1	0,15	0,15
Permitted ¹⁾ isalignment	Radial	long steel bellows	ΔK_r	[mm]	0,2	0,3	0,3
in il	misalignment	short steel bellows	ΔK_r	[mm]	0,1	0,1	0,1
Permitted ¹⁾ misalignments	Angular	long steel bellows	ΔK_{w}	[°]	1	1	1
2	misalignment	short steel bellows	ΔK_w	[°]	1	1	1
Torsi	onal	long steel bellows	C _T	[10 ³ Nm/rad]	9	22	50
sprin	g rigidity	short steel bellows	C _T	[10 ³ Nm/rad]	18	44	100

1) The permitted misalignments may not simultaneously reach their maximum value.

ROBA®-DS – servo couplings Modular Structure

Also available in ATEX design according to the directive 94/9 EC (ATEX 95).

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V_ _._ $\!$

ROBA®-DS – servo couplings

Characteristics and Advantages

- ROBA[®]-DS servo couplings are made of steel and highstrength aluminium alloys – the basis of these extremely compact designs.
- Due to their high performance density, they transmit high torques at comparably low volumes.
- Their low mass moment of inertia also predestines ROBA®-DS servo couplings for highly dynamic drive systems with high speeds.
- The flexible disk pack compensates for shaft misalignments and transmits the torque backlash-free with a high torsional rigidity.
- ROBA[®]-DS servo couplings are absolutely wear-free and maintenance-free.

Installation Example

ROBA®-DS shaft coupling combined with an EAS®safety clutch. Backlash-free and torsionally rigid torque transmission between the motor shaft and the spindle shaft. Compensation of axial, radial and angular misalignments.

Too	hnical Data, D	imonsions				Siz	ze				
iec	fillical Data, L				3	6	10	15			
Nom	ninal torque ¹⁾		T _{KN}	[Nm]	35	60	100	150			
Peak	Peak torque ²⁾		T _{KS} [Nm]		52	90	150	225			
Alternating torque		Τ _{κw}	[Nm]	21	36	60	90				
Outer diameter			[mm]	45	56	69	79				
qnq	Minimum bore			[mm]	10	14	19	25			
g hí	Maximum bore			[mm]	20	28	35	42			
Clamping	Maximum spee	d ³⁾	n _{max}	[rpm]	13500	10800 9000		7800			
am	Length single-je	ointed coupling		[mm]	48,5	52,6	67	69,9			
ū	Min. length dou	ble-jointed coupling		[mm]	59	64,7	79,5	82,8			
⁴⁾ ents	Axial displaceme	nt ^{5) 6)}	ΔK_{a}	[mm]	0,5	0,7	0,9	1,1			
Permitted ⁴⁾ isalignment	Radial	with connection plate	ΔK_r	[mm]	0,15	0,15	0,2	0,2			
ermi aligi	Axial displacement ^{5) 6} Radial with connection plate misalignment ⁵⁾ with special sleeve Angular misalignment per disk pack		$\Delta K_{\rm rH}$	[mm]	Please contact the manufacturer.						
P. mis	Angular misalignr	ment per disk pack	ΔK_w	[°]	1,0	1,0	1,0	1,0			
Torsi	ional spring rigidit	t y disk pack	C _{T LP}	[10 ³ Nm/rad]	17	35	60	145			

1) Valid for max. permitted shaft misalignments.

2) Valid for unchanging load direction, max. load cycles $\leq 10^5$.

3) Not valid for coupling with special sleeve.

4) The permitted misalignments may not simultaneously reach their max. value.5) The values refer to couplings with 2 disk packs.

6) Only permitted as a static or virtually static value.

smartflex[®] – steel bellows couplings **Modular Structure**

(sizes 1 and 2, bore = 16 mm)

available as an option

For detailed information, detailed technical data and dimensions, please see our product catalogue K.932.V_ _._ _

smartflex® – steel bellows couplings

Characteristics and Advantages

- smartflex[®]-steel bellows couplings compensate for axial, angular and radial shaft misalignments.
- Backlash-free shaft attachment, backlash-free torque transmission and high torsional rigidity provide high precision in the drive line.
- The easy and fast shaft attachment saves installation time.
- Due to the ingeniously simple set-up, the priceperformance ratio is extremely advantageous.
- On radial shaft misalignment, the misalignment compensation capability of smartflex[®]-couplings is up to three times higher than the misalignment compensation capability of common steel bellows couplings.
- The high misalignment compensation capability eliminates the most common accident cause on previous generations of steel bellows.
- A flexible modular system minimises storage and provides high availability.

Installation Example

By applying clamping ring hubs, the smartflex[®]-steel bellows couplings can be mounted in areas which are difficult to access. Please provide an opening in the bell housing for the Allen wrench as depicted in the example.

Tool	hnical Data D	Imonoiono			Size								
Tec	hnical Data, D	mensions			0	1	2	3	4	5			
Nom	Nominal torque		Τ _{κΝ}	[Nm]	16	40	100	200	400	700			
Oute	r diameter			[mm]	46	57	72	94	118	146			
	Minimum bore			[mm]	8	11	16	18	30	40			
ing 1g	ຍີ່ອີ Maximum bore			[mm]	19	25	36	50	62	85			
Reducing bushing	Maximum speed	d	n _{max}	[rpm]	10000	8000	6000	4000	3000	2500			
Bu		long steel bellows		[mm]	49,5	59,3	72	90,3	115	124			
	Length	short steel bellows		[mm]	-	43,7	52,5	65,6	87	98			
	Axial	long steel bellows	ΔK_a	[mm]	0,4	0,6	0,8	0,8	0,8	0,6			
[±] 1	displacement	short steel bellows	ΔK_a	[mm]	-	0,3	0,4	0,4	0,6	0,6			
Permitted ¹⁾ isalignment	Radial	long steel bellows	ΔK_r	[mm]	0,3	0,4	0,5	0,5	0,5	0,5			
imi	misalignment	short steel bellows	ΔK_r	[mm]	-	0,1	0,1	0,1	0,1	0,1			
Permitted ¹⁾ misalignments	Angular	long steel bellows	ΔK_w	[°]	3	3	3	3	1,5	1,0			
2	r misalignment	short steel bellows	ΔK_w	[°]	-	1,5	1,5	1,5	1,2	1,0			
Torsi	ional spring	long steel bellows	C _T	$[10^3 \frac{\text{Nm}}{\text{rad}}]$	4	9	22	50	125	305			
rigid	rigidity short steel bellow		C _T	[10 ³ Nm]/rad	-	18	44	100	168	380			

1) The permitted misalignments may not simultaneously reach their maximum value.

ROBA[®]-ES – elastomer couplings Modular Structure

For detailed information, detailed technical data and dimensions, please see our product catalogue K.940.V_ _._ _

This catalogue is also available for download as a pdf file on our website www.mayr.com.

12

ROBA®-ES – elastomer couplings

Characteristics and Advantages

- ROBA[®]-ES couplings transmit the torque backlash-free via pre-tensioned elastomer elements and compensate for shaft misalignments.
- Rigidity and damping behaviour are variable due to four elastomeric elements per size in different Shore hardnesses.
- ROBA[®]-ES elastomer couplings are insertable and are, therefore, also suitable for blind assembly.
- The couplings are maintenance-free, media-resistant and temperature-resistant. This guarantees the highest operational safety.
- ROBA[®]-ES couplings are torsionally flexible within narrow areas. However, in comparison to the toothed belt drive, their rigidity is still 2 to 4 times higher.

Installation Example

The ROBA[®]-ES shaft coupling transmits the torque backlashfree between the motor shaft and the output shaft. It also compensates for axial, radial and angular shaft misalignments.

Tool	hnical Data, Di	monsions							Size				
Teci	inical Data, D	Inensions			14	19	24	28	38	42	48	55	65
Nominal torque Elastomeric element hardness 98 Sh A T _{KN} [Nm]						17	60	160	325	450	525	685	1040
Peak torque Elastomeric element hardness 98 Sh A T _{KS} [Nm]				26	34	120	320	650	900	1050	1370	2080	
Alter	nating torque	Elastomeric element hardness 98 Sh A	Τ _{κw}	[Nm]	Nm] See coupling dimensioning in the current ROBA®-ES catalogue.							€.	
Outer diameter [mm]				30	40	55	65	80	95	105	120	135	
хk	Minimum bore			[mm]	6	10	15	19	20	28	35	40	45
nk di	Maximum bore			[mm]	14	20	28	38	45	50	60	70	75
Shrink disk hub	Maximum speed		n _{max}	[rpm]	28000	21000	15500	13200	10500	9000	8000	6300	5600
ъ	Length			[mm]	50	66	78	90	114	126	140	160	185
ent Sh A	_	axial	ΔK_{a}	[mm]	1,0	1,2	1,4	1,5	1,8	2,0	2,1	2,2	2,6
emer 98 SI	Permitted misalignment ¹⁾	radial	ΔK_r	[mm]	0,09	0,06	0,1	0,11	0,12	0,14	0,16	0,17	0,18
ele ss 9		angular	ΔK_w	[°]	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Elast. element hardness 98 Sh	Torsional spring	static	C _{T stat.}	[10 ³ Nm/rad]	0,12	0,9	3,7	4,2	7,4	13,8	15,1	20,5	32,8
har	rigidity	dynamic	C _{T dyn.}	[10 ³ Nm/rad]	0,3	2,2	7,6	10,1	19,9	31,1	44,9	48,2	67,4

1) The permitted misalignments may not simultaneously reach their maximum value.

ROBA®-DS – backlash-free all-steel couplings Modular Structure

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V_ _._ $\!$

ROBA®-DS – backlash-free all-steel couplings

Characteristics and Advantages

- ROBA®-DS couplings are not sensitive to alternating loads up to the full nominal torque.
- Due to their high performance density, they have a low mass moment of inertia.
- ROBA[®]-DS disk pack couplings transmit the torque absolutely backlash-free and with a constantly high torsional rigidity up to the nominal torque.
- On ROBA[®]-DS couplings, the full nominal torque can be used, even on alternating torques and shaft misalignments.
- They have a high misalignment compensation capability with low restoring forces.
- ROBA[®]-DS couplings are extremely robust and can therefore be used even under difficult conditions.
- The high variant variety permits optimum coupling configuration.

ROBA[®]-DS shaft coupling combined with an EAS[®]-safety clutch in a gear test stand manufactured by the company EGM (Entwicklungsgesellschaft für Montagetechnik GmbH, Hannover).

Installation Example

By using special adaptor flanges, different measuring flanges (for torque measurement) can be integrated into ROBA®-DS couplings.

Tool	hnical Data	Dimonoiono								Si	ze					
Teci	hnical Data,	Dimensions			16	25	40	64	100	160	180	300	500	850	1400	2200
Nominal torque ¹⁾ T _{KN} [Nm]			190	290	450	720	1000	1600	2100	3500	5800	9500	15000	24000		
Peak	torque ²⁾		Τ _{κs}	[Nm]	285	435	675	1080	1500	2400	3150	5250	8700	14250	22500	36000
Oute	r diameter			[mm]	77	89	104	123	143	167	143	167	198	234	274	314
	Minimum bore	•		[mm]	14	20	25	30	35	40	42	50	60	70	80	100
¥ g	Maximum bore	e		[mm]	45	52	60	70	90	100	75	85	100	120	140	170
Shrink disk hub	Maximum speed ³⁾		n _{max}	[rpm]	13600	11800	10100	8500	7300	6200	7300	6200	5200	4400	3800	3300
lS si	Min. length sir	ngle-jointed coupling		[mm]	77,1	87,2	98,4	109,6	120	131,6	141,2	161,2	202	244	276	317,8
	Min. length do	uble-jointed coupling		[mm]	96,2	106,4	120,8	137,2	148	165,2	172,4	194,4	242	295	334	383,6
4) nts	Axial displacem	ient ^{5) 6)}	ΔK_a	[mm]	1,1	1,3	1,5	1,8	2,1	2,5	1,0	1,2	1,4	1,6	1,9	2,2
		with connection plate	ΔK_r	[mm]	0,3	0,3	0,4	0,45	0,45	0,55	0,25	0,25	0,35	0,4	0,5	0,55
Permitted isalignme	Radial misalignment ⁵⁾	with sleeve 1	$\Delta K_{_{rH}}$	[mm]	1,0	1,2	1,5	1,8	2,1	2,2	1,2	1,25	1,35	1,7	2	2,6
berr sali	maangriment	with special sleeve	ΔK_{rH}	[mm]				Ple	ase co	ntact t	he mar	nufactu	irer.			
3 1	Angular misalig	nment per disk pack	ΔK_{w}	[°]	1,0	1,0	1,0	1,0	1,0	1,0	0,5	0,5	0,5	0,5	0,5	0,5
Torsi	onal spring rigi	dity disk pack	C _{t lp}	[10³ <u>Nm</u>]	145	280	301	748	1135	1920	3000	3480	11900	20600	30150	46800

1) Valid for changing load direction and max. permitted shaft misalignments.

2) Valid for unchanging load direction, max. load cycles $\leq 10^5$.

3) Not valid for coupling with special sleeve.

4) The permitted misalignments may not simultaneously reach their max. value.5) The values refer to couplings with 2 disk packs.

6) Only permitted as a static or virtually static value.

ROBA®-DSM – Modular Structure

ROBA®-DSM – the measuring machine element

The areas of application for this torque measurement coupling range from test stand construction through use in serial production machines right up to condition monitoring. The system permits uncomplicated condition monitoring of machines and systems.

Valuable Data for Maximum Productivity

- Machine performance data
- Unpermitted operating conditions lying outside the specifications (in case of a defect or reclaim)
- Utilisation or runtime of the machine
- Current operating conditions and condition changes to the machine for preventative maintenance purposes
- Dynamic maintenance intervals dependent on the utilisation

Highlights and System Advantages

- Direct PC connection possible (USB connection)
- Software for visualisation of the measured values available as an option
- Use without bearings
- Simple installation and set-up
- Low space requirements on the drive line, no torque support required
- Resistant to vibrations and distance changes on the energy transmitter
- Housing and plug-in connector suitable for industrial purposes (protected against water spray)
- High measuring rate of 7000 measurements per second permits the recording of highly-dynamic loads
- Operation of strain sensor without battery via contactless power supply

Technical Data	Dimonoiono		Size							
Technical Data,	Dimensions			16	40	100	160			
Nominal torque ^{1) 2)}		190	450	800	1600					
Peak torque 3)		Τ _{κs}	[Nm]	285	675	1200	2400			
Ultimate torque		[Nm]	570	1350	2400	4800				
	Minimum bore	d _{K min}	[mm]	20	25	32	40			
	Maximum bore	d _{K max}	[mm]	45	60	90	100			
Clamping hub	Maximum speed	n _{max}	[rpm]	9500	7000	5100	4300			
	Length torque measurement coupling		[mm]	178,2	230,8	292	329,2			
Denne itte d	Permitted axial displacement ^{5) 6)}	ΔK_{a}	[mm]	0,8	1,1	1,5	1,7			
Permitted misalignments ⁴⁾	Permitted angular misalignment 7)	ΔK_w	[mm]	0,7	0,7	0,7	0,7			
misallymments /	Permitted radial misalignment ⁵⁾	ΔK_r	[mm]	1,1	1,3	1,6	1,8			
Caving visidities	Total torsional rigidity		[10 ³ Nm/rad]	36,2	114,3	320	585			
Spring rigidities	Angular spring rigidity 7)		[Nm/rad]	229	298	1089	1990			

Technical Data for Measuring System

•••••••••••••••••••••••••••••••••••••••	
Supply voltage	24 VDC (±10 %)
Max. current consumption	1 A
Measuring signal output (rotational direction right positive, 10V refers to ${\rm T_{KN}})$	0 ±10 V
Nominal temperature range	-20 °C to +70 °C
Temperature drift, zero point	0,04 % of final value/K
Temperature drift, measured value	0,03 % of final value/K

1) Other torques and construction sizes available on request.

 Valid for changing load direction as well as for max. permitted shaft misalignment.

The following applies for split clamping hubs: Valid for unchanging load direction as well as for max. permitted shaft misalignment. When the load direction changes, max. 60% of the stated nominal torque is permitted.

Technical Data for Measuring System

Max. total error	< 1 % of final value (< 0,5 % via USB)
Bandwidth	3 kHz (-3 dB)
Max. dyn. load	100 % of T _{KN}
Protection	Receiver/stator IP65 Strain sensor IP52
Permitted speed	0 n _{max}
Connection	M12 plug, 4-pole

3) Valid for unchanging load direction, max. load cycles $\leq 10^5$.

4) The permitted misalignments may not simultaneously reach their maximum values.

5) The values refer to couplings with 2 disk packs.

6) Only permitted as a static or virtually static value.

ROBA®-DS – backlash-free couplings for high torques

Characteristics and Advantages

- Low screw tightening torques
- Can be installed / de-installed radially
- Easy and quick installation / de-installation
- No hydraulic installation tools required; can be installed with a torque wrench
- Backlash-free torque transmission
- FEM-optimized disk shape
- High torsional rigidity
- High performance density
- Compensation of axial, angular and radial misalignments
- Wear and maintenance-free
- High flexibility through customer-specific hubs and sleeves

Design Examples

Single-jointed coupling with key hubs

Double-jointed coupling with shrink disk hub and flange

The design of the hubs and sleeves is carried out according to the customers requirements.

Technical De	ta Dimonsiana			Size								
Technical Da	ta, Dimensions			2200	3300	5000	7300	11000				
Alternating torque ¹⁾ T _{KW} [Nn			[Nm]	14700	22000	33300	48700	73300				
Nominal torque ²⁾ T _{KN} [Nm]			22000	33 000	50000	73000	110000					
Peak torque ³⁾		Τ _{κs}	[Nm]	44000	66 000	100000	146000	220000				
Outer diameter [mm]			[mm]	290	332	378	431	492				
Maximum spee	d	n _{max}	[rpm]	3600	3100	2700	2400	2100				
	perm. axial displacement 5)	ΔK_a	[mm]	1,6	1,7	2,1	2,3	2,3				
Permitted ⁴⁾ misalignments	perm. radial misalignment with special sleeve	$\Delta K_{\rm rH}$	[mm]	Please contact the manufacturer.								
	perm. angular misalignment per disk pack	ΔK_{w}	[°]	0,4	0,4	0,4	0,4	0,3				

1) Valid for changing load direction as well as for max. permitted shaft misalignment.

2) Valid for unchanging load direction as well as for max. permitted shaft misalignment.

3) Valid for unchanging load direction, max. load cycles $\leq 10^5$.

4) The permitted misalignments may not simultaneously reach their maximum values.

5) The values refer to couplings with 2 disk packs.

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V_ _._ $\!$

System solution for wind power plants

ROBA®-DS Wind power module

The *mayr*[®] company's decades of experience in shaft couplings and overload systems for all areas of mechanical engineering forms a strong basis for our wind power module. The wind power module has the following characteristics:

• Safe overload protection

An integrated ROBA[®]-slip bushing produced from a speciallydeveloped bushing material ensures reliable overload protection against short-circuit torques due to its minimal torque tolerance.

• Electrical insulation

The electrical insulation through the sleeve made of glass fibre-reinforced plastic prevents damage to bearings and toothing.

• Compensation of shaft misalignments

Specially-developed rustproof steel disks allow compensation of extremely high axial, radial and angular shaft misalignments. This means that only low restoring forces are generated.

Integrated brake disk

A brake disk can be integrated into the wind power module according to customer-specific requirements.

Ease of installation

The disk packs and the intermediate sleeve can be mounted and de-installed radially without axial displacement of the hub being required.

It is possible to install the disk packs with low tightening torques by using special clamping nuts.

